References

[1]
Jérémie Decock. Hybridization of dynamic optimization methodologies. Theses, Université Paris Sud - Paris XI, November 2014.
[2]
Jérémie Decock, Jean-Joseph Christophe, and Olivier Teytaud. Direct model predictive control. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgique, April 2014.
[3]
Jérémie Decock, Jean-Joseph Christophe, and Olivier Teytaud. Optimization of Energy Policies Using Direct Value Search. In 9èmes Journées Francophones de Planification, Décision et Apprentissage (JFPDA’14), Liège, Belgique, May 2014.
[4]
Jérémie Decock, Jialin Liu, and Olivier Tetaud. Variance Reduction in Population-Based Optimization: Application to Unit Commitment, pages 1377–1378. GECCO Companion ’15. ACM, New York, NY, USA, 2015.
[5]
Jérémie Decock, David L. Saint-Pierre, and Olivier Teytaud. Evolutionary Cutting Planes. In Stephane Bonnevay, Pierrick Legrand, Nicolas Montmarché, Evelyne Lutton, and Marc Schoenauer, editors, Artificial Evolution (EA2015), page forthcoming, Lyon, France, 2015.
[6]
Jérémie Decock and Olivier Teytaud. Noisy optimization complexity under locality assumption. In Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, FOGA XII ’13, pages 183–190, New York, NY, USA, 2013. ACM.
[7]
Jérémie Decock and Olivier Teytaud. Linear Convergence of Evolution Strategies with Derandomized Sampling Beyond Quasi-Convex Functions. In Artificial Evolution, Lecture Notes in Computer Science, pages 53–64. Springer International Publishing, Bordeaux, France, 2014.
[8]
Didier Marin, Jérémie Decock, Lionel Rigoux, and Olivier Sigaud. Apprentissage de politiques efficaces avec XCSF et CEPS. In Sixièmes journées francophones MFI/JFPDA, pages 298–310, Rouen, France, 2011.
[9]
Didier Marin, Jérémie Decock, Lionel Rigoux, and Olivier Sigaud. Learning cost-efficient control policies with xcsf: Generalization capabilities and further improvement. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pages 1235–1242, New York, NY, USA, 2011. ACM.

This document was translated from LATEX by HEVEA.